There are three major sets of processes that must be considered when constructing a climate model: (i) radiative (the transfer of radiation through the climate system, e.g., absorption and reflection); (ii) dynamic (the horizontal and vertical transfer of energy, e.g., advection, convection, and diffusion); and (iii) surface process (inclusion of processes involving land/ocean/ice and the effects of albedo, emissivity, and surface-atmosphere energy exchanges). If the nonlinearities in these processes are treated improperly, then while designing the model, the complexity and thus its reliability will not be retained in the highest degree. In Section 2.2 we have considered surface-atmosphere energy exchanges with cadence on the phenomenon of a possible occurrence of the chaos in solving the energy balance equation for calculating the environmental interface temperature in climate models. Here, following Mihailović et al. (2012) we analyze the horizontal energy exchange between environmental interfaces which is described by the dynamics of driven coupled oscillators [54]. In order to study their behavior, when a perturbation is introduced in the system, as a function of the coupling parameter, the logistic parameter, and the horizontal energy exchange intensity (parameter of exchange, in further text), we considered dynamics of two maps serving the diffusive coupling [54].
DJ Models Nene Sets 150 Added
2ff7e9595c
Comments